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The elastic constants of carbon-fibre 
composites 
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Metallurgy Division, UKAEA Research Group, Atomic Research Establishment, Harwell, Berks, 
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Data on the elastic constants of carbon-fibre composites are presented. It is shown that 
provided the elastic constants of both the fibre and the matrix are known it is possible to 
predict the elastic constants of the composite parallel to the fibre axis using either the 
reduced equations of Halpin and Tsai, based on a self-consistent model, or the exact 
calculations of Heaton. The properties of the composite perpendicular to the fibres cannot 
be explained on the basis of the theoretical models considered. 

l .  I n t r o d u c t i o n  
In order to predict the behaviour of a composite 
material stressed within its linear elastic range it 
is necessary to know the elestic constants and 
forces applied. The elastic constants of a range 
of composites manufactured from various resin 
systems and from two types of carbon fibre, laid 
axially, have been determined. The values 
obtained have been compared with the values 
predicted from the properties of the matrix 
materials and the carbon fibres. Before describ- 
ing the experimental and analytical methods used 
some definition of the elastic constants and their 
relation to physically measured properties is 
necessary. 

Provided the fibres are distributed throughout 
the matrix so that the material is isotropic 
perpendicular to the fibres, then such a material 
has cylindrical or hexagonal symmetry. In order 
to describe its behaviour it is necessary to know 
five independent elastic constants. Using the 
standard notation of Kittel [1] these constants 
are denoted by: 

$11, S12, $13, $3~, $4~ 

S~1 relates the strain perpendicular to the fibres 
to a stress applied in the same direction; Sa3 
relates the strain parallel to the fibres to a stress 
applied in this direction; S~2 relates the strain 
perpendicular to the fibres to a stress applied 
perpendicular to the strain; $13 relates the strain 
perpendicular to the fibres to a stress applied 
parallel to them; S~4 relates the shear strain about 
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an axis perpendicular to the fibres to a couple 
about the same axis. 

The measured laboratory constants are the 
Young's moduli parallel and perpendicular to 
the fibre axis, the torsional rigidity parallel and 
perpendicular to the fibre axis, and the longi- 
tudinal and transverse Poisson's ratios. These 
quantities are denoted by: 

E,t, E• Gll, G=, 7,~ and Y_L 

They are related to the elastic constants by the 
following equations 

E,E = 1/S3a (1) 

~ = l / S .  (2) 

1 
G,, - S~4 - C4~ (3) 

~,, = S18/S~3 (4) 

7_~ = s l ~ / s .  (5) 

The elastic constants $11, $12, $18, S3a and $44 can 
be calculated directly from the measured labora- 
tory constants using the relations given in 
Equations 1 to 5. The remaining constant, S~6, 
can be determined either from the relationship 
$6~ = 2(Sn - S~) or from the measurement of 
the torsional rigidity, G• perpendicular to the 
fibres. G• depends on C44 and C66. For  speci- 
mens with circular section 

G• = �89 + C~6) (6) 
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For specimens with rectangular section the 
relationship is more complex. According to Love 
[4] the torque on a sample of rectangular section 
is given by 

oo 

Mt = 0C~4 a ~ b - 

n = 0  

(2n + 1) a tanh - 2a ~ / C 6 d J  (7) 

where n may be regarded as analogous to mode. 
As C44 is known C~8 can be calculated from 
Equation 7 by an iterative process. 

2. Experimental techniques 
2.1. Manufacture of specimens 
The samples used were produced in two basic 
forms. The first was a cast bar about 30 cm long, 
1.25 cm wide, and 0.25 cm thick. Most of the 
bars were produced by hand-laying a known 
weight of fibre into a mould, vacuum impregnat- 
ing with resin and then pressing and curing. 
Some bars were, however, produced by a 
filament-winding technique in which the fibres 
were wound into special moulds under tension. A 
number of different fibre - volume loadings was 
used for each type of fibre in the various resin 
systems. 

Blocks of composites each 25 cm square by 
0.6 cm thick were also produced by hand-laying 
fibre in a mould and vacuum-impregnating with 
resin. Again a variety of volume-loadings was 
produced for each type of fibre and resin system. 
Blocks of pure resin were also cast for each 
system used. Six samples were then cut from each 
of  the blocks. Three were cut parallel to the fibre 
axis and three perpendicular to it. The samples 
were each 10 z 0.8 • 0.5 cm. Considerable 
difficulty was found in machining samples 
perpendicular to the fibre direction and some 
samples had to be rejected owing to distortion. 

2.2. Measurement of volume fraction of fibre 
The volume fraction of fibre in the long bars was 
estimated from the dimensions of the bars, the 
weight of fibre used and the density of the fibre. 
From the density of the pure resin it was also 
possible to calculate the void volume in each of 
the long bars. In the principal system studied this 
was 1 to 2 % but was somewhat higher for some 
of the other resin systems. 

In the case of the samples cut from the blocks 
the volume fraction of fibre was estimated from 
the density of the individual samples. 
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2.3. Dynamic Young 's  modulus 
The dynamic Young's modulus was measured by 
a F6rster resonant bar technique in which trans- 
verse modes were excited in the specimen. With 
the long bars it was possible to excite up to six 
modes in which the direction of vibration was 
perpendicular to the wide face of the bar. It was 
found that the apparent Young's modulus 
decreased with increasing mode number. This 
effect is due to the increased importance of  
correction for shear deformation and rotational 
inertia as the effective aspect ratio of the speci- 
men decreases. These correction factors are well 
known for isotropic homogeneous materials 
and have been summarized by Ramsden [2]. The 
appropriate values for samples with similar 
dimensions to those used in these experiments are 
given in Table I. These are for homogeneous 
isotropic materials and the corrections will be 
larger for anisotropic materials. The actual 
frequency ratios for different modes were found 
to be very similar to the theoretical frequency 
ratios, predicted for homogeneous isotropic 
materials. 

The dynamic moduli of the short bars cut both 
parallel and perpendicular to the fibre direction 
were measured on the same apparatus. In the 
case of bars cut parallel to the fibres it was 
possible to excite only one or two modes with the 
wide face either vertical or horizontal. For bars 
cut perpendicular to the fibres three modes could 
be found in each case. The results quoted are 
those calculated from the first mode since this 
will be the most accurate and will be less sensitive 
to local variations in fibre concentration. 

2.4. Static Young 's  modulus 
The static Young's modulus was measured by a 
three-point bending beam method on both the 
long and the short bars. The determination of the 
Young's modulus of materials with a high 
modulus (say 20 to 30 • 106 psi) from a three- 
point bend test is not straightforward owing to 
the interfering effects of deflection due to shear, 
bedding down at the loading points and machine 
softness. This is illustrated in Fig. 1, which shows 
the apparent Young's modulus of composite 
bars with the fibre laid parallel to the bar as a 
function of the ratio of separation of outer 
supports to specimen thickness. In the case of 
fibres cut perpendicular to the fibre direction, 
for which the modulus is much lower, the 
apparent modulus is almost independent of the 
gauge length used. 
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TABLE I Correction constants for the vibrational Young's modulus for different mode numbers and aspect ratios 

Aspect ratio Mode 

1 2 3 4 5 6 

12:1 1.043 1.122 1.24 1.41 
20: l 1.017 1.046 1.091 1.151 1.187 1.268 

100:1 1.004 1.010 1.020 1.032 1.044 1.060 
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Figure i The ratio of apparent Young's modulus to real 
Young's modulus as a function of aspect ratio of the test 
bar. 

The true Young's  modulus was obtained from 
data of  this type in the following manner. The 
observed deflection of a beam supported at its 
ends and loaded at its centre point is given by: 

30 = PL a + QL + R 

where P is a constant depending on the Young's  
modulus, applied load and cross section of the 
sample; Q is a constant depending on the shear 
modulus, applied load and cross section of the 
sample; R is a constant depending on the 
machine softness and depression at loading 
points and applied load; L is gauge length of 
sample. 

I f  30 is measured as a function of gauge length 
for the same maximum load then P can be 

obtained by the method of least squares and 
hence the true modulus can be evaluated. 

All the long bars and the short bars cut 
perpendicular to the fibre direction showed a 
linear elastic deformation. In some of the short 
bars cut parallel to the fibres the stress-strain 
diagram showed considerable curvature and it 
was not possible to analyse the data. 

2.5. Tensile Young's modulus and Poisson's 
ratio 

The Young's  modulus of  the long bars was 
measured in tension and the strain monitored by 
foil strain gauges to obtain values for both the 
Young's  modulus and the Poisson's ratio. Six 
strain gauges were mounted at the middle of  the 
wide faces of the bars. Two pairs were used to 
measure tensile strain and the other pair to 
measure lateral strain. One of each pair was 
mounted on each wide face of the bar. The 
gauges were monitored independently and 
strains noted as a function of applied load. With 
the arrangement of gauges used it was possible 
to check that the specimen was under true 
tension and that no bending took place. The 
maximum stress applied was about 25 ~ of the 
UTS of the bars. The samples showed perfectly 
linear elasticity in the strain range studied 
(2 x 10 -6 to 1 x 10-3). The Young's modulus 
obtained by this method agreed closely with the 
values obtained on the same samples using the 
bending beam method. 

2,6 Torsional rigidity 
The torsional rigidity both parallel and perpen- 
dicular to the fibres was measured on the short 
bars. Samples were mounted in an apparatus 
specially constructed to allow a torque to be 
applied without bending the samples. Mirrors 
were mounted on the face of the specimens and 
the deflection of the gauge length measured by 
lamp and scale technique. The deflection was 
measured as a function of torque applied both 
clockwise and anticlockwise. The torsional 

235 



P. I / .  G O G G I N  

rigidity was taken as the ratio of maximum stress 
over maximum strain. The computation of the 
true shear modulus on rectangular specimens 
presents some difficulties. For the specimens cut 
parallel to the fibres there is only one rigidity 
modulus involved and it can be shown that 

W R  
GII = wOa3b 

where G H = rigidity modulus parallel to the 
fibres; W = load applied in dynes; R = radius 
about which load is applieds; 0 = angle of twist 
per unit length of sample; b = width of speci- 
men; a = thickness of specimen; K = constant 
depending on a and b. 

Timoshenko and Goodier [3] show that 

[ 192 b ~_s 1 b (2n+ 1)1 
K = �89 1 5 (2n + 1) '~tanh 2a 

n = 0  

where n is analogous to the mode. 
This is rapidly convergent and can easily be 

computed for each specimen from its dimensions. 
Hence G~T can be evaluated and, since Gt~ = 
1/S4a, $44 can be computed. 

The perpendicular torsional rigidity modulus 
was obtained in a similar manner. 

3. Resul t s  
3.1. Fibre properties 
Batches of fibre from which the composites were 

manufactured have been tested by the normal 
methods. The results are shown in Table II. 

3.2. Properties of matrix materials 
The properties of the resin systems used were 
measured on samples machined from cast blocks. 
These materials are isotropic and their mechan- 
ical behaviour can be described by two elastic 
constants. The properties are summarized in 
Table III. 

3.3. Young's modulus 
Fig. 2 shows the Young's modulus parallel to the 
fibre direction as a function of fibre volume 
fraction for type 1 fibre in resin system A. 
Results for both hand-laid and tension-wound 
bars are shown. Data for hand-laid bars using 
the other resin systems were similar to the 
results obtained on resin system A. The results 
from the tension-wound bars were considerably 
higher than from the hand-laid bars and were 
close to the moduli predicted from the volume 
fraction of fibres and law of mixtures. This is due 
to the better fibre alignment achieved with ten- 
sion winding. 

Fig. 3 shows the Young's modulus parallel to 
the fibres for type 2 fibres in resin system A as a 
function of fibre volume fraction. The data was 
in general within 10 ~o of the results predicted by 
the law of mixtures. Similar results were obtained 
with the other resin systems. 

T A B L E I I Measured properties of the fibres used in the manufacture of the composites 

Type Young's modulus Tensile strength Diameter 
(~m) 

(• 10 -6 psi) (GNm -2) (• 10 3 psi) (GNm -2) 

1 56.9 ~: 1.0 395 i 8 224 • 12 1.53 4- 0.08 7.9 4- 0.1 
2 33.2 ~ 1.2 230 ~ 9 285 • 30 1.96 4- 0.2 8.6 4- 0.3 

TABLE II I  Properties of the various resin systems 

Resin Young's modulus Shear modulus Poisson's 
ratio 

(• 10 6 psi) (GNm -2) (• 10 -6 p s i )  (GNm-0 

A 0.56 3.9 0.21 1.4 0.33 
AV1 0.53 3.7 0.21 1.4 0.30 
AV2 0.48 3.3 0.18 1.2 0.32 
AV3 0.51 3.5 0.19 1.3 0.31 
B 0.57 4.0 0.22 1.5 0.31 
C 0.86 6.0 0.32 2.2 0.36 
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Figure 2 The Young's modulus parallel to the fibres as a function of volume fraction of type 1 fibre in resin systemA. 
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Figure 3 The Young's modulus parallel to the fibres as a function of volume fraction of type 2 fibre in resin system A. 

The Young's  modulus  perpendicular to the 
fibres is shown in the next figure as a function o f  
vo lume  fraction o f  fibre for both type 1 and type 
2 fibre in resin system A. It should be noted that 
the type 2 fibres give a higher transverse modulus  

than the type 1 fibres. This probably reflects the 
more  anisotropic nature o f  the type 1 fibre. 

3.4. Tors ional  rigidity 
The torsional  rigidity parallel and perpendicular 
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Figure 4 The Young's modulus perpendicular to the fibres as a function of  volume fraction of  both type 1 and type 2 
fibres in resin system A. 

to the fibre for both type 1 and type 2 fibre in 
resin systems A and C is shown in Fig. 5. Resin 
system C had a higher Young's modulus and 
rigidity modulus than the other systems exam- 
ined and this is reflected in the higher rigidity 
modulus of the composites. It should be noted 
that parallel to the fibres (i.e. twisting about the 
fibre axis) the rigidity modulus is independent of 

the type of fibre used. The torsional rigidity 
perpendicular to the fibres is however sensitive 
to the properties of the fibre used and is higher 
for type 2 fibres than for type 1 fibres. 

3.5, Po isson 's  ratio 

The longitudinal and transverse Poisson's ratios 
are shown in Fig. 6 as a function of volume 
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Figure 5 Rigidity modulus as a function of  volume fraction of type 1 and type 2 fibre in both resin system A 
:and C, 
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Figure 6 Longitudinal and transverse Poisson's ratios as a function of volume fraction of both type 1 and type 2 
fibres in resin system A. 

loading of both type 1 and type 2 fibre. There was 
considerable scatter in the data but the mean 
longitudinal value for both types of fibre was 
similar to that of  pure resin (i.e. about 0.3) while 
the mean transverse value for type 1 fibre 
composites was 0.47 and for type 2 fibres for 
composites 0.52. These values are significantly 
higher than the Poisson's ratio of  the pure resin. 

4. Discussion 
The elastic constants of a unidirectional compo- 
site material have been calculated theoretically 
by a number of people. The method of approach 
varies from netting analysis to complex statistical 
methods. However, in every case, certain basic 
assumptions are made about the composite. 
These are, 1, the composite is macroscopically 
homogeneous and linearly elastic; 2, the fibres 
and matrix are independently homogeneous and 
linearly elastic; 3, the matrix and fibres are free 
of  voids and flaws; 4, the bonding between the 
fibres and the matrix is perfect and there is no 
transition region; 5, the fibres are regularly 
spaced and well aligned. 

Several different approaches have been used in 
the many theoretical calculations. A review of 
these is given elsewhere [5]. Only the work of 
Heaton [6, 7] and Halpin and Tsai [8] can be 
directly applied to the present data. 

Halpin and Tsai have examined the calcula- 
tions and have shown that the various results 
can be reduced to an approximate form which 
gives good agreement with the exact calculations~ 

The approximate solutions are given by 
(a) for longitudinal tensile properties 

E33 = E~ Vf + Em Vm 

Y13 = Yf Vf + ~'mVm, 

(b) for transverse and shear properties 

P (1 + AB Vd 
Pm (1 = B VO 

where B = (P~/Pm - 1)/(P~/Pm + A ) ; P  = com- 
posite modulus; Pm = corresponding matrix 
modulus; Pf = corresponding fibre modulus; 
A = reinforcement factor which depends on 
boundary conditions. 

They found that for the prediction of longi- 
tudinal shear the best results were obtained for 
A -- 1, while for transverse modulus A --- 2 gave 
the best results. These calculations, however, all 
suffer from the drawback that they assume the 
fibre is isotropic. 

Heaton has calculated the elastic constants for 
a unidirectional composite for both isotropic and 
anisotropic fibres. His calculations for the iso- 
tropic fibre composite agree very closely with the 
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others. For the anisotropic fibre composite he 
showed that at intermediate loadings the trans- 
verse properties of  the composite are determined 
mainly by the properties of  the matrix materials. 
At higher loadings the anisotropic nature of  the 
fibre is important and transverse reinforcement 
is considerably less than would be obtained from 
isotropic fibres. His numerical results for 
composites made with anisotropic fibres are for 
type 1 carbon fibres only. 

Comparison may now be made between the 
experimental results and theoretical results based 
on calculations using the Halpin-Tsai equations 
or the exact calculations in Heaton 's  second 
paper. The assumed fibre moduli are shown in 
Table IV. 

In both theoretical models the Young's  
modulus predicted parallel to the fibres is within 
1 ~ of  the value based on the law of mixtures. I t  
should be pointed out that all in the models 
examined the Young's  modulus parallel to the 
fibres reduced to a uniform strain calculation. I t  
has been shown experimentally that provided 
care is taken to ensure good alignment of the 
fibres in the composite then the predicted 
modulus can be achieved. In the case of  hand- 
laid composites the modulus can be as much as 
25 ~ lower than predicted for type 1 fibre and 
20 ~ lower than predicted for type 2 fibre. Cook 
[9], has calculated the effect of  imperfect fibre 
orientation on the elastic constants of composites. 
This work suggests that if  the root mean square 
fibre scatter was of the order of  10 ~ then the loss 

in modulus for type 1 fibre would be 25 ~ and for 
type 2 fibre would be about 15 ~ .  Measurements 
by Egelstaff [10], on composites used in this 
experiment gave half-widths to the distribution 
of fibre orientation of between 10 and 20 ~ . This 
implies a root mean square fibre scatter of  about 
10 ~ and this is sufficient to explain the observed 
short fall in the Young's modulus. 

The theoretical data and experimental data for 
the longitudinal shear modulus for both type 1 
and type 2 fibre composites are shown in Fig. 7. 
The longitudinal shear modulus is the only case 
where it seems appropriate to assume uniform 
stress in calculating the modulus. However, this 
gives an answer which is lower than that observed 
experimentally. Thus at 50 ~ volume fraction of 
fibre the predicted shear modulus is 2.46 G N m  -2 
whereas the measured value is 3.8 G N m  -~ and 
at 70% volume fraction of fibre the predicted 
value is 4.0 G N m  -2 while the measured value is 
6.8 G N m  -2. The calculations based on the re- 
duced equations of Halpin and Tsai give very 
similar results to the exact calculations by 
Heaton. The prediction of both the trend and 
the actual experimental values is very satisfac- 
tory for both models. 

The data for the transverse shear modulus 
(Crn) are shown in Fig. 8, I t  should be pointed 
out that for hexagonal symmetry C66 = �89 - 
C1~) or S66 = 2 ( S u -  $1~). Both theoretical 
calculations predict values that are much lower 
than those recorded experimentally if the assumed 
fibre elastic constants are used. This implies 

TABLE IV Measured and assumed elastic constants of carbon fibres 
(a) Engineering constants 

Modulus Type 1 Type 2 

Ezz (Longitudinal Young's modulus)* 
En (Transverse Young's modulus) 
G44 (Longitudinal shear modulus)* 
/z13 (Longitudinal Poisson's ratio) 
/z~ (Transverse Poisson's ratio) 

55 • 10 npsi 33 • 106 psi 
4 • 106 psi 4 • 10 ~psi 

3.8 • 106 psi 3.8 • 106 psi 
0.5 0.5 
0.28 0.28 

(b )  Compliance moduli (in units of TN -1 m 2 

Modulus Type 1 Type 2 

Szz* 2.6 4.7 
Sn 36.3 36 
$44" 38.3 38 
~$12 - 10.2 - 10.2 
~$13 - 1.3 - 2.4 

*Measured values. 
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either that the models fall down in the prediction 
of  this modulus, or that the assumed fibre elastic 
constants are wrong, or that there is some error 
in the extraction of  the value of  $66 from the 

measurement of  the torsional rigidity perpen- 
dicular to the fibre. 

Measurements of  $1~ and S~2 by strain gauges 
confirm the values of  $66 obtained from the 
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Figure 9 Theoretical and experimental data for the transverse Yotmg's modulus of composites of type 1 fibre in 
resin system A. 

torsional measurements. It is therefore concluded 
that either the assumed fibre constants are wrong 
or the models fall down in the prediction of this 
modulus. 

It is of interest to calculate the fibre elastic 
constants which would bring the theoretical 
calculations into agreement with the experi- 
mental data. In the case of the Halpin Tsai 
equations it is easy to alter the assumed values of 
the fibre constants. It is not possible to do this 
with the Heaton model. It was found that the 
value of C66 for the fibre had to be about half 
the rigidity modulus of the resin to give agree- 
ment between the predicted and experimental 
values. This revised value gives a compliance S~6 
for the fibre of 1380 TN -~ m e compared to the 
originally assumed value of 94 TN -~ m 2. 

Fig. 9 shows the theoretical and experimental 
data for the transverse Young's modulus for 
type 1 fibre in resin system A. Again both the 
Heaton and Halpin-Tsai calculations give similar 
values for the composite modulus. However, the 
values obtained are too high when the original 
fibre constants are used. In this case the fibre 
transverse modulus must be decreased to about 
7 GNm -~ in order to give good agreement 
between the theoretical calculations and the 
experimental data. The revised value of S~ for 
the fibre becomes 130 TN -a m-L Combining this 
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with the value of S66 obtained earlier it is found 
that $12 becomes - 560 TN -1 m-L The revised 
value of $11 for the fibre is lower than generally 
assumed but it is perfectly reasonable for a 
graphitic structure and in the absence of  any 
direct measurement there seems no reason to 
doubt its validity.The very high value transverse 
Poisson's ratio implied by the revised values for 
S~2 is impossible to accept physically. It is quite 
easy to demonstrate that such a value leads to a 
negative value for the bulk modulus of the fibre. 
This obviously contravenes the laws of thermo- 
dynamics and the revised values must be wrong. 
This means that the models for calculating elastic 
constants of the composites cannot deal success- 
fully with the transverse shear properties. 

Fig. 10 shows the transverse shear and 
Young's modulus for composites made with 
type 2 fibre. It was not possible to use the Heaton 
calculations for these composites. The best fit 
between experimental and theoretical results 
was obtained when Gr~ of fibre was taken at 
2.9 G N m  -e and E~I as 15.3 GNm--L This gave 
values for S~1 of 65 TN -1 m S, for $66 of 345 
TN -1 m 2 and for $12 of - 109 TN  -1 m 2. Again 
these values for $1~ are physically impossible, 
thus confirming the inability of the module to 
deal with the transverse shear properties of the 
composite. 
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Figure 10 Theoretical and experimental data for the transverse shear modulus composites of type 2 fibre in 
resin system A, and the transverse Young's modulus of composites of type 2 fibre in resin system A. 

It  should be noted that the longitudinal 
Poisson's ratio is, according to the Halpin-Tsai 
equation, given by the law of mixtures. Since the 
composites were found to have similar Poisson's 
ratios to the resin this implies that the fibres also 
have a similar longitudinal Poisson's ratio. The 
values assumed for this fibre constant may there- 
fore be revised to 0.33. This has the effect of  
altering Sla to 0.9 T N  -1 m 2 for type 1 fibre and 
1.6 T N  1 m 2 for type 2 fibre. 

5. Conclusions 
It has been found that the theoretical values of  
the elastic constants of  unidirectional composites 
obtained f rom calculations based on different 
models are similar. In the case of  carbon-fibre 
composites it was found that there was good 
agreement between the theoretical calculations 
and experimental data for those cases in which 
the fibre constants are known. The calculations 

of  transverse Young's  modulus and shear 
modulus gave answers which were too high with 
the generally assumed values of  the relevant 
elastic constants of  the fibre. These values are 
based on knowledge of the elastic properties of  
single crystals, and polycrystalline graphites. 

On the assumption that the models for predic- 
tion of the elastic constants are correct, revised 
values for the elastic constants of  the fibres can 
be estimated. These values contravene the laws of 
thermodynamics and therefore indicate that the 
models are wrong for the transverse shear 
properties. 
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Append ix  
Details of resin systems 
System A Parts by wt 

Araldite resin MY 750 100 
Methylnadic anhydride 
(MNA) 80 
Benzyl dimethylamine 

(BDMA) 1 

Cure 
120~ for 3 h 
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System AV1 
Araldite resin M Y  750 100 
Methylnadic anhydride 90 
Benzyl dimethylamine 1 

System AV2 
Araldite resin M Y  750 100 
Methylnadic anyhdride 80 
Benzyl dimethylamine 1 

System AV3 
Araldite resin M Y  750 100 
Methylnadic anhydride 90 
Benzyl dimethylamine 1 

System B 
Bakelite resin 19230 100 
Diaminodiphenylmethane 33 

System C 
Union  Carbide 4617 116 
Metaphenylenediamine 

pre-impregnated f rom 
methyl-ethyl ketone 
solution 27 

120~ for 3 h 

80~ for 6 h, 125~ for 16 h 

80~ for 6 h, 125~ for 16 h 

70~ for 12 h, 120~ for 4 h 

120~ for 16 h, 165~ for 16 h 
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